Vitamer Levels, Stress Response, Enzyme Activity, and Gene Regulation of Arabidopsis Lines Mutant in the Pyridoxine/Pyridoxamine 5#-Phosphate Oxidase (PDX3) and the Pyridoxal Kinase (SOS4) Genes Involved in the Vitamin B6 Salvage Pathway 1[W][OA]

نویسندگان

  • Eugenia González
  • David Danehower
  • Margaret E. Daub
چکیده

PDX3 and SALT OVERLY SENSITIVE4 (SOS4), encoding pyridoxine/pyridoxamine 5#-phosphate oxidase and pyridoxal kinase, respectively, are the only known genes involved in the salvage pathway of pyridoxal 5#-phosphate in plants. In this study, we determined the phenotype, stress responses, vitamer levels, and regulation of the vitamin B6 pathway genes in Arabidopsis (Arabidopsis thaliana) plants mutant in PDX3 and SOS4. sos4 mutant plants showed a distinct phenotype characterized by chlorosis and reduced plant size, as well as hypersensitivity to sucrose in addition to the previously noted NaCl sensitivity. This mutant had higher levels of pyridoxine, pyridoxamine, and pyridoxal 5#-phosphate than the wild type, reflected in an increase in total vitamin B6 observed through HPLC analysis and yeast bioassay. The sos4 mutant showed increased activity of PDX3 as well as of the B6 de novo pathway enzyme PDX1, correlating with increased total B6 levels. Two independent lines with T-DNA insertions in the promoter region of PDX3 (pdx3-1 and pdx3-2) had decreased PDX3 activity. Both also had decreased activity of PDX1, which correlated with lower levels of total vitamin B6 observed using the yeast bioassay; however, no differences were noted in levels of individual vitamers by HPLC analysis. Both pdx3 mutants showed growth reduction in vitro and in vivo as well as an inability to increase growth under high light conditions. Increased expression of salvage and some of the de novo pathway genes was observed in both the pdx3 and sos4 mutants. In all mutants, increased expression was more dramatic for the salvage pathway genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance.

Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, a genetic screen for salt overly sensitive (sos) mutants was performed in Arabidopsis. We present here the characterization of sos4 mutants and the positional cloning of the SOS4 gene. sos4 mutant plants are hypersensitive to Na(+), K(+), and Li(+) ions. Under NaCl stre...

متن کامل

Biomedical aspects of pyridoxal 5'-phosphate availability.

The biologically active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor in over 160 enzyme activities involved in a number of metabolic pathways, including neurotransmitter synthesis and degradation. In humans, PLP is recycled from food and from degraded PLP-dependent enzymes in a salvage pathway requiring the action of pyridoxal kinase, pyridoxine 5'-phosphate oxidase and phosp...

متن کامل

The Intestine Plays a Substantial Role in Human Vitamin B6 Metabolism: A Caco-2 Cell Model

BACKGROUND Vitamin B6 is present in various forms (vitamers) in the diet that need to be metabolized to pyridoxal phosphate (PLP), the active cofactor form of vitamin B6. In literature, the liver has been reported to be the major site for this conversion, whereas the exact role of the intestine remains to be elucidated. OBJECTIVE To gain insight into the role of the intestine in human vitamin...

متن کامل

Long-term prednisolone treatments increase bioactive vitamin B6 synthesis in vivo.

The etiology of vitamin B(6) depletion in inflammation remains unknown. Hepatic vitamin B(6) decreased in adrenalectomized rats, and such reductions were restored by an acute muscle injection of a very high dose of glucocorticoids. We tested the hypothesis that long-term prednisolone treatment for treating inflammation restores vitamin B(6) status by induction of tissue B6 metabolic enzymes. Tw...

متن کامل

Vitamin B6Metabolism in Liver and Liver-derived Tumors1

Vitamin B6 metabolism has been investigated in several highly and well-differentiated Morris hepatomas. Comparisons have been made with two poorly differentiated Morris hepato mas, with host livers obtained from tumor-bearing animals, and with fetal, neonatal, and adult rat liver. The pyridoxal phosphate content and the activities of pyridoxine kinase and pyridoxine phosphate oxidase of all Mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007